您尚未登錄,請登錄後瀏覽更多內容! 登錄 | 註冊
 找回密碼
 註冊
查看: 1379|回復: 18
打印 上一主題 下一主題

有無人知點解?   [複製鏈接]

TD-初級熟手

銀河版主

Rank: 6Rank: 6

該用戶從未簽到

跳轉到指定樓層
樓主
發表於 2011-8-13 15:16:08 |只看該作者 |倒序瀏覽
點解1+1=2? 答中有野送

使用道具 舉報

TD-進階生

靜心等待兩年.....

Rank: 5Rank: 5

  • TA的每日心情
    慵懶
    2012-11-24 04:44:31
  • 簽到天數: 2 天

    [LV.1]初來乍到

    沙發
    發表於 2011-8-13 15:19:02 |只看該作者
    因為1+1=2,所以1+1=2,我答中1000 tdp吾該

    使用道具 舉報

    TD-初級熟手

    銀河版主

    Rank: 6Rank: 6

    該用戶從未簽到

    板凳
    發表於 2011-8-13 15:20:06 |只看該作者
    iq題 邊會有你咁易答中

    使用道具 舉報

    Rank: 5Rank: 5

  • TA的每日心情
    擦汗
    2012-10-6 09:58:30
  • 簽到天數: 17 天

    [LV.4]偶爾看看III

    地板
    發表於 2011-8-13 15:24:58 |只看該作者
    本帖最後由 kob061a20 於 2011-8-13 15:25 編輯

    1+1=2?no            

    點評

    cowblonggor9  y no^^  發表於 2011-8-13 15:25:31

    使用道具 舉報

    禁止訪問

    風遊,這是我現在的名字.

  • TA的每日心情
    奮鬥
    2013-2-28 22:53:56
  • 簽到天數: 2 天

    [LV.1]初來乍到

    動漫區版首圖片選拔獎品 全Server Admin

    5#
    發表於 2011-8-13 15:26:36 |只看該作者
    提示: 作者被禁止或刪除 內容自動屏蔽

    使用道具 舉報

    TD-初級熟手

    銀河版主

    Rank: 6Rank: 6

    該用戶從未簽到

    6#
    發表於 2011-8-13 15:47:50 |只看該作者
    不要小看這個公式,1+1=2登上科學界‘最偉大公式’之一。
    有不少人都可能曾經問過"為何1+1=2?"這個看似多餘(!?)的問題。現在我嘗試向有興趣的網友簡單介紹一下怎樣在公理集合論的框架內証明 "1+1=2 quot;這句對絕大多數人來說都"顛撲不破"的數學述句。首先,大家要知道在集合論的脈絡中我們討論的對象是各式各樣的集合(或類(class),它們和集合的分別在此不贅),故此我們經常碰到的自然數在這裡也是以集合(或類)來定義。例如我們可用以下的方式界定0,1和2(eg.qv. Quine, Mathematical Logic, Revised Ed., Ch. 6, §43-44):

    0 := {x: x ={y: ~(y = y)}}
    1 := {x: y(yεx..x\{y}ε0)}
    2 := {x: y(yεx..x\{y}ε1)}


    〔比如說,如果我們從某個屬於1這個類的分子拿去一個元素的話,那麼該分子便會變成0的分子。換言之,1就是由所有只有一個元素的類組成的類。〕

    現在我們一般採用主要由 von Neumann 引入的方法來界定自然數。例如:

    0:= Λ, 1:= {Λ} = {0} =0∪{0},
    2:= {Λ,{Λ}} = {0,1} = 1∪{1}

    [Λ為空集]

    一般來說,如果我們已經構作集n, 那麼它的後繼元(successor) n* 就界定為n∪{n}。

    在一般的集合論公理系統中(如ZFC)中有一條公理保證這個構作過程能不斷地延續下去,並且所有由這構作方法得到的集合能構成一個集合,這條公理稱為無窮公理(Axiom of Infinity)(當然我們假定了其他一些公理(如並集公理)已經建立。

    〔注:無窮公理是一些所謂非邏輯的公理。正是這些公理使得以Russell 為代表的邏輯主義學派的某些主張在最嚴格的意義下不能實現。〕

    跟覑我們便可應用以下的定理來定義關於自然數的加法。

    定理:命"|N"表示由所有自然數構成的集合,那麼我們可以唯一地定義映射A:|Nx|N→|N,使得它滿足以下的條件:
    (1)對於|N中任意的元素x,我們有A(x,0) = x ;
    (2)對於|N中任意的元素x和y,我們有A(x,y*) = A(x,y)*。

    映射A就是我們用來定義加法的映射,我們可以把以上的條件重寫如下:
    (1) x+0 = x ;(2) x+y* = (x+y)*。

    現在,我們可以証明"1+1 = 2" 如下:
    1+1
    = 1+0* (因為 1:= 0*)
    = (1+0)* (根據條件(2))
    = 1* (根據條件(1))
    = 2 (因為 2:= 1*)

    〔注:嚴格來說我們要援用遞歸定理(Recursion Theorem)來保證以上的構作方法是妥當的,在此不贅。]

    1+ 1=2"可以說是人類引入自然數及有關的運算後"自然"得到的結論。但從十九世紀起數學家開始為建基於實數系統的分析學建立嚴密的邏輯基礎後,人們才真正審視關於自然數的基礎問題。我相信這方面最"經典"的証明應要算是出現在由Russell和Whitehead合著的"PrincipiaMathematica" ;中的那個。
    我們可以這樣証明"1+1 = 2":
     首先,可以推知:
    αε1<=> (Σx)(α={x})
    βε2 <=> (Σx)(Σy)(β={x,y}..~(x=y))
    ξε1+1 <=> (Σx)(Σy)(β={x}∪{y}..~(x=y))
    所以對於任意的集合γ,我們有
     γε1+1
    <=>(Σx)(Σy)(γ={x}∪{y}..~(x=y))
    <=>(Σx)(Σy)(γ={x,y}..~(x=y))
    <=> γε2
    根據集合論的外延公理(Axiom of Extension),我們得到1+1 = 2。]

    使用道具 舉報

    TD-初級熟手

    銀河版主

    Rank: 6Rank: 6

    該用戶從未簽到

    7#
    發表於 2011-8-13 15:48:48 |只看該作者
    no上面個個答案.. 吾通真係無人知點解1+1=2?!

    使用道具 舉報

    TD-進階生

    靜心等待兩年.....

    Rank: 5Rank: 5

  • TA的每日心情
    慵懶
    2012-11-24 04:44:31
  • 簽到天數: 2 天

    [LV.1]初來乍到

    8#
    發表於 2011-8-13 15:51:12 |只看該作者
    我知A_A,因為係老師話1+1=2,所以就係,我知我答中la,求其1000 tdp la

    點評

    cowblonggor9  錯錯錯~  發表於 2011-8-13 15:52:38

    使用道具 舉報

    TD-初級熟手

    銀河版主

    Rank: 6Rank: 6

    該用戶從未簽到

    9#
    發表於 2011-8-13 15:53:25 |只看該作者
    答案會係今日6點 開估

    使用道具 舉報

    Rank: 5Rank: 5

  • TA的每日心情
    奮鬥
    2012-10-20 15:14:55
  • 簽到天數: 26 天

    [LV.4]偶爾看看III

    10#
    發表於 2011-8-13 15:58:57 |只看該作者
    無得解A_A

    使用道具 舉報

    您需要登錄後才可以回帖 登錄 | 註冊

    GMT+8, 2025-5-8 04:55 , Processed in 0.025762 second(s), 16 queries .

    © 2001-2011 Powered by Discuz! X2. Theme By Yeei!


    重要聲明:本討論區是以即時上載留言的方式運作,TheDeath對所有留言的真實性、完整性及立場等,不負任何法律責任。而一切留言之言論只代表留言者個人意見,並非本網站之立場,讀者及用戶不應信賴內容,並應自行判斷內容之真實性。於有關情形下,讀者及用戶應尋求專業意見(如涉及醫療、法律或投資等問題)。 由於本討論區受到「即時留言」運作方式所規限,故不能完全監察所有留言,若讀者及用戶發現有留言出現問題,請聯絡我們。TheDeath有權刪除任何留言及拒絕任何人士上載留言 (刪除前或不會作事先警告及通知 ), 同時亦有不刪除留言的權利,如有任何爭議,管理員擁有最終的詮釋權 。用戶切勿撰寫粗言穢語、誹謗、渲染色情暴力或人身攻擊的言論,請自律。本網站保留一切法律權利。
    回頂部